Skip to Main Content
UPCOMING WEBINAR | Safer Streets, Sooner: Using data to support the most impactful interventions | Register Now
App Developers & ConsultantsCreate unique products using StreetLight’s rich datasets and APIs.View Developer Resources
Marketplaces & ResellersOffer StreetLight’s datasets to help your users achieve better outcomesBecome a Reseller
Data PartnersHave data that could enrich StreetLight’s analytics? Talk to us.Become a Partner
Company
Discover our journey from pioneer to industry leader
Learn more about us
Featured report

Transportation Climate Impact Index: How metros rank across 8 key factors

View report
Get Started
Products
For Government
For Consultants
Transportation Systems Management and Operations (TSMO)
Traffic Monitoring
Plans
App Developers & ConsultantsCreate unique products using StreetLight’s rich datasets and APIs.View Developer Resources
Marketplaces & ResellersOffer StreetLight’s datasets to help your users achieve better outcomesBecome a Reseller
Data PartnersHave data that could enrich StreetLight’s analytics? Talk to us.Become a Partner
Company
Discover our journey from pioneer to industry leader
View All Company
About UsCareersPressUniversity ResearchData Privacy

Swift Streets? Complete Rankings for Traffic Management at Every Stadium in Taylor Swift’s U.S. Eras Tour

In a study of traffic delays across the entire U.S. Eras Tour, StreetLight found delays at least doubled at most of the 23 stadiums where Swift performed — but there were some notable outliers. At one venue, traffic actually improved. This report updates and expands StreetLight’s prior analysis of nine stadiums that hosted Eras Tour concerts in March–May 2023. 

Taylor Swift concert goers

Jump Ahead

Need to manage congestion without expanding highways? Get the congestion solutions guide.
Download

When Taylor Swift announced her first live tour since 2018, the rush on tickets by fans made national headlines (and earned a congressional hearing).

For transportation and transit agencies, and stadium operators, a very different challenge emerged: Managing traffic from the legions of fans who would descend on the stadiums for the Eras Tour.

Event operations pose a special challenge as they put a dramatic tax on roadway operations over a narrow time block, which local transportation infrastructure is not built to support during a typical day. As a result, stadium operations groups often work in close coordination with local transportation agencies to manage traffic, as well as ingress and egress from the stadium.

So when it comes to the Eras tour, how have the stadiums and agencies fared at managing fan traffic and keeping the roadways flowing? StreetLight ran the numbers to find out. Then, we look at how transportation and operations professionals can use analytics for more effective events traffic management.

Key Findings:

  • Vehicle Hours of Delay (VHD) on roadways adjacent to the concert venues at least doubled during most Eras Tour concerts. On average, vehicle delays were 277% higher across all stadiums compared to delay hours at comparable times on non-concert dates. 
  • Only four out of 23 venues saw traffic delays increase by less than 100%: MetLife Stadium in East Rutherford, NJ ; Mercedez-Benz Stadium in Atlanta, GA; Empower Field at Mile High in Denver, CO; and Acrisure Stadium in Pittsburgh, PA. 
  • Traffic around MetLife Stadium, which invested heavily in transit access, actually decreased compared to usual delays. This is the only venue where traffic decreased. 
  • The worst venue for increased traffic delays (based on % change from typical conditions) was Gillette Stadium in Foxborough, MA. This is a location where typical VHD is relatively low compared to many of the other venues studied. 

Eras Tour Traffic Winners & Losers

To understand the traffic impacts from the U.S. Eras Tour concerts, StreetLight analyzed Vehicle Hours of Delay (VHD) on all non-local roadway segments within a one-mile radius of each stadium during the peak arrival hour of 5-6 p.m. on each concert date. VHD measures the difference in vehicle travel time on a segment during congested versus free-flowing conditions, multiplied by the number of vehicles traveling on that roadway.  

This same process was repeated for the same days of week within that month (concert dates and holidays excluded) to determine a baseline VHD for a typical travel day. You can read more about StreetLight’s data here

Overall, across all 23 stadiums and 62 concerts, average delay hours were 277% higher than typical. In fact, all but four stadiums saw delay hours at least double on average over the course of the concerts. 

traffic management rankings by VHD % change for Taylor Swift's Eras Tour U.S. concerts

Two major success stories emerged, however: Atlanta’s Mercedes-Benz Stadium and New Jersey’s MetLife Stadium saw average delays well under 100%. 

Atlanta only saw a 32% increase in traffic delays. But NJ’s MetLife Stadium was the real standout

VHD actually decreased during the concerts, by 27% on average over the course of the three nights. Notably, both Atlanta and New Jersey’s concert venues were given high marks for their emphasis on public transit options to the concert. Atlanta’s Metropolitan Rapid Transit Authority System (MARTA) reported seeing three times the usual ridership during the concert days at stations near the stadium, according to CBSNews. NJTransit, which ran extra service around the stadium, carried 80,000 riders via train and bus to the concert, according to NJ.com. 

Of note, on a normal day, both MetLife Stadium and Mercedez-Benz Stadium see higher baseline congestion than most of the other stadiums studied here (with the sole exception of Vegas’ Allegiant Stadium). 

Philadelphia also placed a big emphasis on public transit. This may have paid off for the stadium on two of the concert nights. The Friday and Sunday shows in May 2023 at Philadelphia’s Lincoln Financial Field saw below average increases in delays compared to the other stadiums, with VHD 200% and 186% higher than typical for streets around the stadium, respectively. 

However, on Saturday night Philadelphia’s Lincoln Financial Field encountered huge snarls, with a 599% increase in hours of delay. This dragged down the stadium’s average across the three nights. It’s also a signal of how tenuous traffic management at an event like this can be, and how easy it is for delays to compound. 

But by far the worst increase in traffic delays occurred at Gillette Stadium in Foxborough, MA, near Boston. It saw delays 1,270% higher than typical on average over three nights in May 2023. Typical VHD near the stadium is low compared to many of the other venues in this study, perhaps because Foxborough, MA is a small town of just over 18k residents as of 2022, though its stadium regularly hosts sold out football games as the home of the New England Patriots, and is the largest stadium in the Greater Boston metro area. 

Next highest for percent increase in traffic delays, at 737% higher than typical, was Kansas City, MO’s Geha Field at Arrowhead Stadium. Like Gillette Stadium, this venue also sees relatively low typical VHD. 

4 venues saw big differences in VHD % increase by concert day during Taylor Swift's Eras Tour U.S. concerts

Like Philadelphia’s Lincoln Financial Field, several other venues also saw dramatic differences in excess VHD depending on the concert date, including AT&T Stadium in Arlington, TX, Gillette Stadium in Foxborough, MA, and Geha Field at Arrowhead Stadium in Kansas City, MO. 

Among these venues, Saturdays and Sundays tended to see the worst increase in delays, with Fridays relatively lower. This could be influenced by commuter traffic on Friday evenings peaking between 5 and 6 p.m., driving up typical VHD on Friday evenings, resulting in lower increases comparatively. 

commuters on busy highway at night

Solve congestion WITHOUT highway expansion

Get Congestion Solutions Guide

How Transportation, Events, & Operations Professionals Can Manage Event Traffic Better

Events like the hotly anticipated concerts of Swift’s Eras Tour test the limits of everyday traffic operations, and often demand temporary strategies that reduce congestion, encourage shared transportation modes, and keep concert-goers safe.

But anticipating and mitigating traffic issues from special events is far from simple. To minimize delays, promote smooth traffic flow, and ensure safety, planners and operators need to know which routes attendees will travel, the modes they will use on the way, the intersections where they’ll be turning, and what alternate routes people may take as primary routes become congested.

Complicating these challenges is the time and financial cost of gathering the right data needed to understand all these factors. While certain major arterials may benefit from permanent traffic counters, many roadways lack these counters, such as residential or other local roads that may experience cut-through traffic when larger roadways become gridlocked.

This makes it impossible to get historical data with the granularity needed to understand past events or even average seasonal roadway conditions. Meanwhile, collecting data on complex roundabouts, intersections, or weaving segments can also be difficult, even if manual counts or surveys are deployed in advance of the event.

Big Data and Special Events Traffic Planning

A big data approach to special events planning can help fill crucial data gaps to anticipate their traffic impacts. Whether it’s used to inform broader travel demand models or applied for analysis of traffic operations during specific events, access to on-demand transportation analytics expedites special events planning without needing to put staff in harm’s way for manual counts and surveys that only capture a snapshot of traffic during a short period of time.

This expedited process allows planners and operators to proactively evaluate alternative traffic management strategies and communicate their decisions with the public in advance of special events.

Moreover, analyzing Origin-Destination of traffic, and routing to and from event venues can be particularly difficult when using traditional data collection methods, but it can also be one of the best starting points to understanding where and why congestion hotspots occur while also revealing underutilized road segments that could be used to free up traffic.

top routes analysis for state farm stadium event traffic
A StreetLight Top Routes analysis shows the most-used routes traveling to State Farm Stadium near Phoenix, AZ. Top-used road segments appear in red.

Big data makes analyzing top routes quick and simple so that traffic operations managers or planners have the best tools to ensure traffic flows smoothly.

When analyzing historical traffic data for special events planning, the following metrics can be helpful:

  • Origin-Destination (O-D) and Top Routes – to anticipate where attendees are coming from, which roadways can expect the largest increase in travelers, and which less-used segments could be candidates for traffic rerouting.
  • Turning Movements – to understand where and when people turn into and near the event venue during typical conditions and special events.
  • Traffic Volumes – to understand where roadways may reach capacity and identify potential detour routes.
  • VHD – to anticipate the impact and severity of traffic congestion during special events compared to average conditions.
  • Speed – to evaluate safety conditions and crash risk near the venue, especially for vulnerable road users like pedestrians and cyclists.
  • Travel Time – to understand how special events impact not just attendees but other road users and communicate expected delays to the public.
  • Bike and Pedestrian activity – to identify common walking and cycling routes to and from the venue.
  • Transit ridership – to understand available capacity for shared transportation modes that can help ease congestion.
Origin-Destination analysis for Raymond James Satdium event traffic
A StreetLight Origin-Destination analysis shows where trips headed to Tampa’s Raymond James Stadium for the Eras Concert began, with darker blues representing higher concentrations of trip starts.

Planners and traffic engineers can use these metrics to anticipate how traffic conditions will change during special events and prioritize traffic management strategies that will keep traffic flowing and protect the safety of all road users.

For example, examining turning movements at key intersections leading to the event venue could inform temporary signal retiming on the day(s) of the event to offer more opportunities for attendees to make their turns toward the venue. Likewise, identifying increased traffic volumes on residential or other local streets not suited for high-volume traffic could signal the need for signage directing event attendees to preferred alternate routes toward the venue.

Traffic operations managers can now also leverage real-time or near real-time data to monitor traffic disruptions as they develop and compare current speed and volume conditions to historical data to diagnose slow-downs or safety concerns and how to deploy the best solution quickly. StreetLight’s Traffic Monitor product can equip agencies and firms with real-time insights for any road, even newly constructed roads and other roads without physical counters. The gif below shows an example of atypical volumes around Las Vegas’ Allegiant Stadium during the 2024 Super Bowl.

time lapse of super bowl traffic congestion
StreetLight Traffic Monitor product users can view a time lapse of traffic trends measured by atypical volume, speed, atypical speed, and atypical delay. This Super Bowl time lapse shows atypical volumes. Higher volumes appear in red while lower volumes are in blue.

To learn how you can leverage big data for special event and other traffic operations management, check out our Traffic Engineering and Operations Solutions.

Notice Something Different?

If you read StreetLight’s original analysis, covering the first nine venues of the Eras Tour in March–May of 2023, you may have noticed some differences in the results from the original analysis. 

To learn more about the methodological changes driving those differences and why the new data reflected in the above analysis improves upon the reliability of congestion insights, check out our new blog on Data and Methodology updates for February 2025. There you’ll find an in-depth explanation of how StreetLight’s new Network Performance analysis type compares to the Segment Analysis data we used for the original nine-venue analysis — and where stadium rankings differed slightly between the two methodologies. You’ll also find information on other recent reliability improvements to metrics like vehicle volumes and VMT. 

commuters on busy highway at night

Get traffic flowing with nine data-driven congestion solutions

Get Congestion Solutions Guide

Ready to dive deeper and join the conversation?

Explore the resources listed above and don’t hesitate to reach out if you have any questions. We’re committed to fostering a collaborative community of transportation professionals dedicated to building a better future for our cities and communities.

Get Started